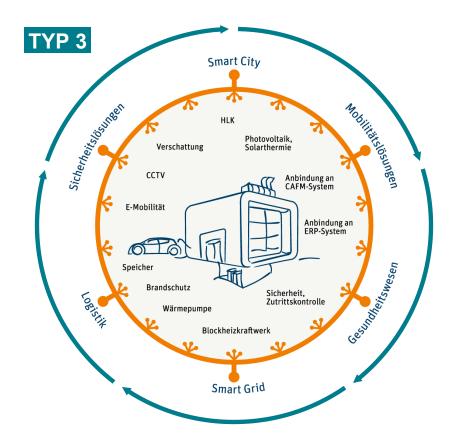

Kieback&Peter

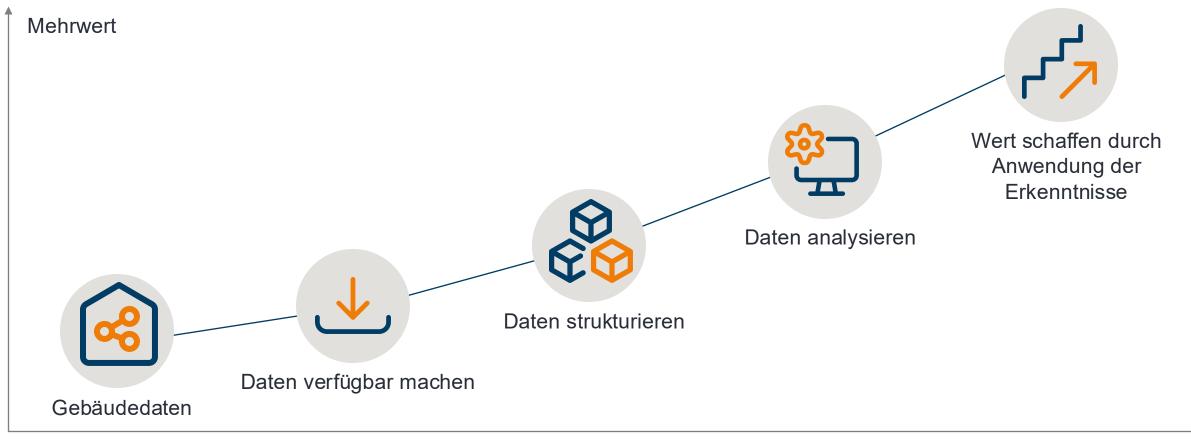


Funktionsweise und Praxisbeispiele

19.09.2025 | Gregor Molwitz

Stand der Gebäudeautomation 2025

Herausforderung/Möglichkeiten


In Immobilien werden eine Vielzahl unterschiedlicher Sensoren eingesetzt

Anzahl an Sensoren erzeugt riesige Menge an Daten

Aus Daten ...

Prozess

... einen Mehrwert schaffen ...

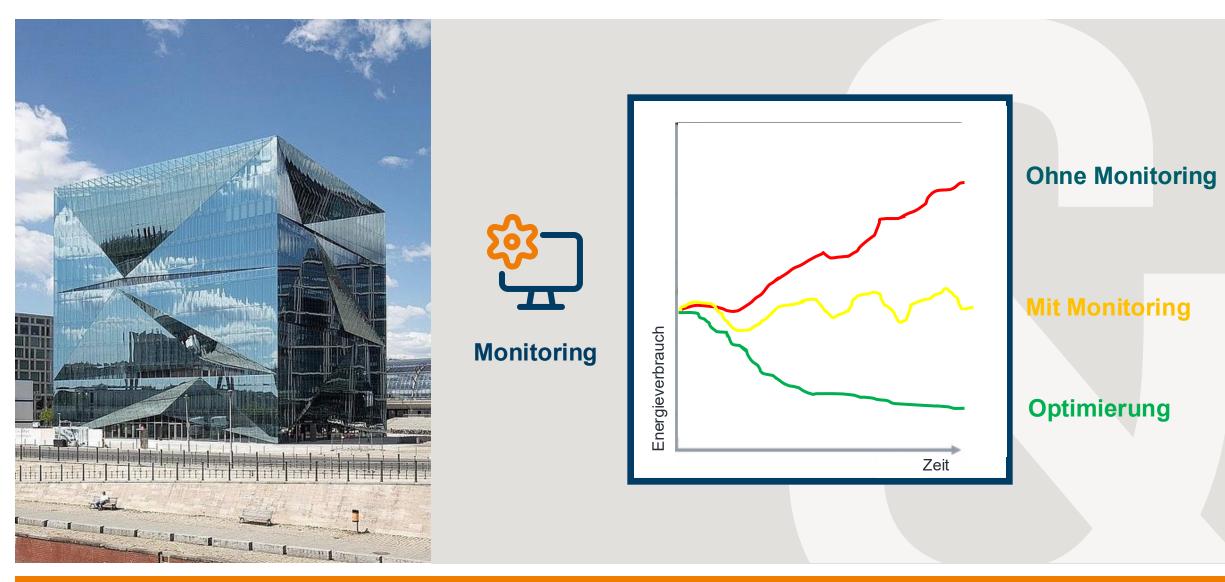
... um den Herausforderungen gewachsen zu sein

Kieback&Peter

DER ANFANG

IST GEMACHT

In der Gebäudeleittechnik werden viele Daten gesammelt



Die Daten aus der Gebäudeautomation werden vielfältig verwendet

Optimierung muss dauerhaft erfolgen!

Herausforderungen für die Optimierung

Datenmenge

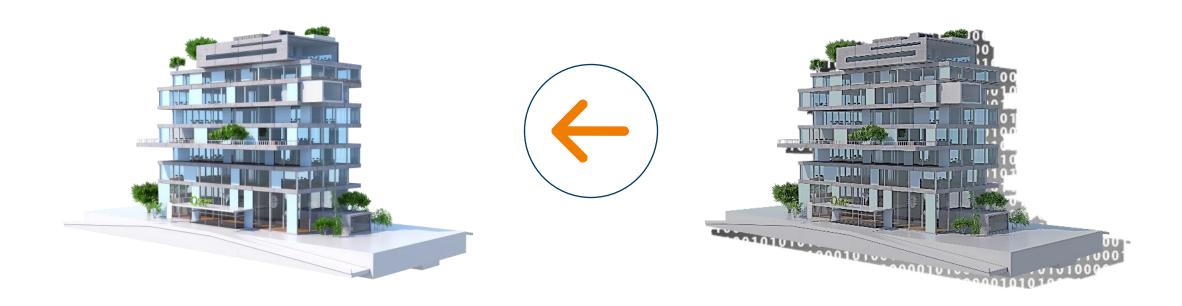
Gebäudedaten für Optimierung nutzbar machen

Automatische Analyse der Daten

Simulation mit Verfahren der künstlichen Intelligenz

Prädiktive Regelung

Aus den Daten und KI-basierten Modellen entsteht ein digitaler Zwilling des Gebäudes



Mit digitalem Zwilling & Prognosedaten wird das Verhalten des Gebäudes simuliert

Aus der Prognose werden Stellwerte für die reale Anlage abgeleitet

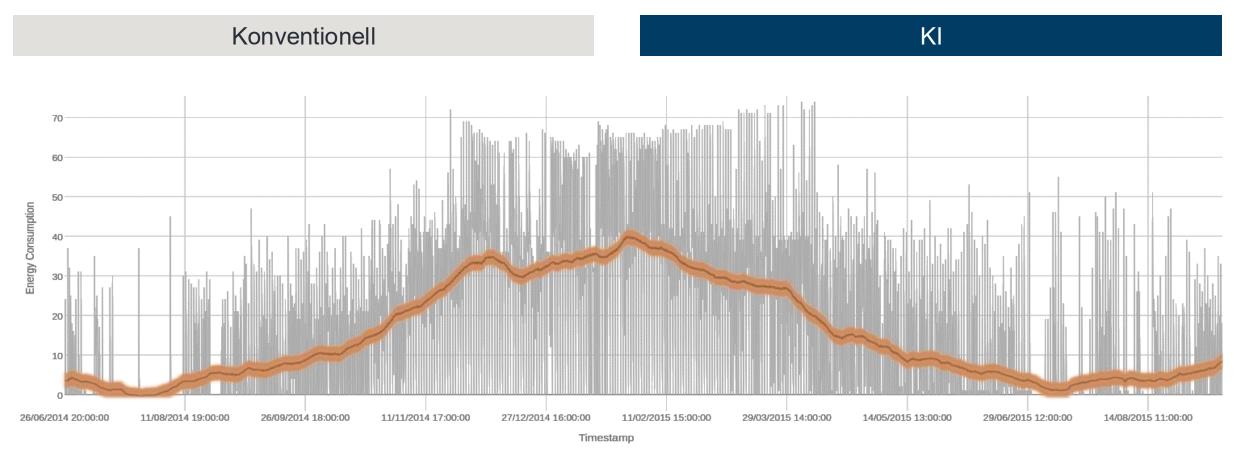
Daraus werden Stellwerte für die Anlagentechnik abgeleitet. Diese werden an die Gebäudeautomation übergeben. Präzise Simulation des Gebäudeverhaltens und des Energiebedarfs auf Basis der Prognosedaten

KI sorgt für einen kontinuierlichen Prozess

Daten aus dem Gebäude werden permanent ausgewertet

Digitaler Zwilling wird dauerhaft nachtrainiert

Immer effizienter



Prognose wird kontinuierlich angepasst

Updates alle 15 Minuten und somit werden 96x täglich die Stellwerte aktualisiert und an die Gebäudeautomation übergeben

Hohe Effizienz durch Lastgangoptimierung

Konventioneller Lastgang mit häufigen Spitzenlasten und hartem Gegensteuern

Geglätteter Lastgang durch Einsatz durch KI

Vorteile

Erhöhte Verfügbarkeit der Anlagen

- Frühzeitiges Erkennen von Leistungsabfällen und technischen Problemen durch Datenpunktüberwachung mit Alarming
- Reparatur anstatt Totalausfall
- Weniger Ausfallzeiten

Nachhaltigkeit

Reduzierung des CO₂-Ausstoß

Dauerhafter Komfort

- Raumtemperatur, Luftfeuchte und CO₂-Gehalt konstant im optimalen Bereich
- Hohe Zufriedenheit aller Gebäudenutzer

Im Betrieb

- Reduzierung von Betreiberaufwand
- Eingriffsmöglichkeiten bleiben erhalten

Einfache Integration

Aufsetzen auf die bestehende Infrastruktur

Energetische Optimierung

- Reduzierung des Energieverbrauchs im Bereich HLK
- Reduktion von Kosten in den Anlagen

Voraussetzungen

Kommunikation via BACnet, Modbus, OPC UA

Temperatursensoren

Zähler

Modellparameter I

FÜHRUNGSGRÖSSEN

Raumtemperatur

Luftqualität

- CO₂
- VOC

Luftdruck

relative Feuchte

. . .

Modellparameter II

STELLGRÖSSEN

Zuluft-Solltemperatur

Ventilatorendrehzahl

Klappenstellung

- Außenluftklappe
- Mischluftklappe
- Fortluftklappe

Ventile

...

Modellparameter III

EXOGENE PARAMETER

Außentemperatur

Globalstrahlung

Niederschlag

Belegung, Kunden-/ Besucherfrequenz

..

Modellparameter IV

OPTIMIERUNGSGRÖSSEN

Stromverbrauch (kWh)

- Kältemaschine
- Lüftung

Gasverbrauch

- Heizung
- BHKW

Spitzlast (Fernwärme)

Mit einer prädiktiven Regelung können alle Gebäudetypen optimiert werden

Produktion

Schulen

Bürogebäude

Öffentliche Verwaltungsgebäude

Hochschulen Universitäten

Kaufhäuser

Krankenhäuser

Handel

Hotel

en:predict

Projektbeispiele

AUSSTATTUNG

- Bestandsgebäude, Einzelhandel
- Fläche: 13.400 qm, 6 Etagen,17 Klimazonen
- Ausstattung: HLK
- Technik: 2 Gaskessel, 2 Kältemaschinen, 4 Lüftungsanlagen

BASELINE

Verbrauch pro Jahr

Wärme 496 MWh

en:predict

30 % Energie gespart

CO₂-Einsparung

Energieeinsparung 350 MWh/a

verbesserter Komfort für Mitarbeiter und Kunden

Kälte 182 MWh

Lüftung 592 MWh

Referenz – Berufskolleg

Fläche 22.734 m²

Technik Schule Fernwärme, 7

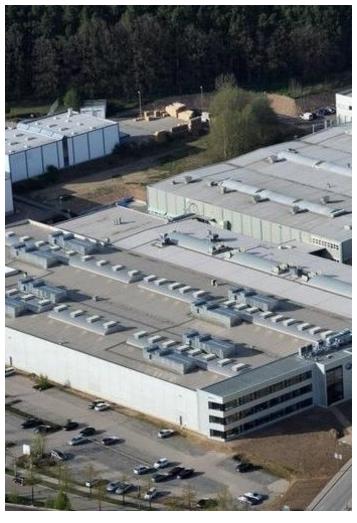
Lüftungsanlagen

Automationsebene 5.000 Datenpunkte

Schnittstelle BACnet

Referenz – Shopping-Center

Fläche Ca. 95.000 m²


Anlagen HLK

32 Anlagen

Schnittstelle BACnet

Referenz - Industrie

43 % Einsparung

Objekt

- Industriestandort mit Hallenverbund
- Nutzfläche ca. 17.000m²
- Heizkessel, 13 Lüftungsanlagen

Projektumfang

- in vorhandene DDC 4000 Technik integriert
- Aufschaltung auf Neutrino

Positive Effekte

- erhebliche Energieeinsparung
- bestmöglicher Komfort
- Keine Auswirkungen auf den Produktionsbetrieb

Referenz - Universität

Ausgangssituation

Objekt

- Universität
- Nutzfläche 13.839 m²

Vorhandene Technik

- ODC4000er Technik
- Neutrino GLT
- Energiezähler

Projektstart

Februar 2022

Projektumsetzung

- in vorhandene DDC 4000 Technik integriert
- Wissenschaftliche Begleitung

32 % Einsparung

Ergebnisse

Einsparungen

- Jährlich um ca. **220 MWh** geringerer Verbrauch für HLK
- ✓ Jährlich werden dadurch ca. 70 t
 CO₂ vermieden

Amortisation

Ca. **1,5 Jahre** nach Vertragsstart

Weitere Positivfaktoren

- Verbesserter Komfort
- Service läuft vollständig automatisiert und transparent nach Vorgaben des Kunden und bindet keine Vorortressourcen

Weitere Referenzen

Berufskolleg NRW

19%

6.000 m²

Store in Rheinland-Pfalz

49%

2.000 m²

Industrieobjekt in Bielefeld

48%

12.000 m²

Möbelhaus in Freiburg

30%

26.800 m²

Produktion in Steinhagen

25%

85.000 m²

Kieback&Peter

Mithilfe intelligenter Regelung Energiekosten und CO₂-Emissionen reduzieren

KI **optimiert dauerhaft** die technischen Anlagen Ihres Gebäudes mit Hilfe von intelligenten Algorithmen

CO₂-Emissionen reduzieren

Energieverbrauch reduzieren

Höchstmöglicher Komfort

- Autonome, KI-gestützte Regelung der Anlagen für Heizen, Lüften und Klimatisieren
- Wärme, Kälte und Frischluft werden dauerhaft bedarfsgerecht bereitgestellt
- Prädiktives Regelprinzip bezieht u.a.
 Wetterprognose und erwartete Gebäudenutzung für die optimale Regelung mit ein
- Nutzung der Betriebs- und Energiedaten des Gebäudes zur Bestimmung der optimalen Regelstrategie
- Dashboard zur transparenten Darstellung der tatsächlich realisierten Einsparungen

Schnell integrierbar ohne
Betriebsunterbrechung

Betriebskosten und CO₂-Footprint messbar senken

Ø Amortisation < 24 Monate

Servicekosten umlagefähig und planbar

Temperierung gemäß Mietervorgaben sichern

Höhere Mieterzufriedenheit

Attraktivere Flächen für Mieter und Vermieter

ESG-Ziele von Mietern und Auftraggebern unterstützen

Kieback&Peter

IHR PERSÖNLICHER

ANSPRECHPARTNER

Gregor Molwitz

Produkt- und Solutionmanagement

Kieback&Peter GmbH & Co. KG

Tempelhofer Weg 50

12347 Berlin

Tel.: +49 30 600 95 271

Mobil: +49 151 168 260 47

molwitz@kieback-peter.de

